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All bicovariant differential calculuses on GL,(3, C) and 
SLq(3,Q 

Klaus Bresser 
Institut f i i  Theoretische Physik, der Univenita Gattingen, Bunsenstr. 9, D-37073 Gattingen. 
G-Y 

Received 20 October 1994 

Abstract. AI1 bicovariant fint-order differential calculuses on the quantum group GLq(3,  C) 
are determined. Theze are two distinct one+”eter families of calculuses. In terms of a 
suitable basis of I-forms the commutation relations can be expressed with the help of the R- 
mauix of GLq(3, e). Some calculuses induce bicovariant differential calculuses on SLq(3. C j  
andonrealformsofGLq(3,Cj. Forthegenaicdeformationparametery therearesixcalculuses 
on SLq(3, C). on SU,(3j there are only two. The classical limit q + 1 of bicovximt calculuses 
on SLq(3, C j  is not the ordinary calculus on SL(3, e). One obtains a deformation of it which 
involves the Cartan-Killing metric. 

1. Introduction 

In recent years ‘non-commutative geometry’ (see [ 1,2] for some aspects of it) appeared as a 
new branch of geometry and a new framework for physical model building. It has its origin 
in the basic observation that a manifold (respectively, a topological space) is completely 
characterized by the algebra of functions on it, viewed as an abstract commutative (P-) 
algebra. Geomehcal concepts can be understood as algebraic structnres on this algebra and 
then generalized to non-commutative algebras (for which there is no longer an underlying 
topological space). 

In differential geometry an important role is played by Lie groups which correspond to 
commutative Hopf algebras [3,4]. ‘Quantum groups’ are non-commutative Hopf algebras. 
Examples are obtained as deformations of classical groups (as Hopf algebras) [5-8]. In 
particular, they provide us with new symmetry concepts which are of relevance, in particular, 
in the context of conformal field theories and quantum integrable models. 

The differential geometry of Lie groups (and their co-set spaces) enters the mathematical 
modelling of physical theories. In particular, this is the case for classical gauge theories 
formulated in terms of connections on principal fibre bundles, and for Kaluza-Klein theories. 
First steps have been made to generalize the corresponding notions to the realm of non- 
commutative geometry (see [9-111, for example). There is some hope of obtaining 
interesting ‘deformations’ of physical models in this way, in particular for elementary 
particle physics and gravitation. 

A central part of such a programme is to develop a differential calculus on quantum 
groups. This has been done by Woronowicz [12]. He introduced the notion of bicovatiance 
as a natural condition to reduce the number of possible differential algebras associated with 
a given quantum group. In the meantime a large number of papers appeared dealing with 
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examples of bicovariant differential calculuses on special (classes 00 quantum groups (see 
[13] for an extensive list of references). However, one would like to have a complete 
description of all possible bicovariant differential calculuses on certain quantum groups 
rather than just a collection of  examples. For the two-parameter quantum group GL,,, (2, C) 
and related subgroups this was achieved in [13,14]. We used similar methods to determine 
all bicovariant (first-order) differential calculuses on GL,(3, C) and SL,(3, C)t. Examples 
of  bicovariant differential calculuses on GL,(3, C) have already been presented in [U] .  

The classical limit q + 1 leads to a Hopf algebraic description of the Lie groups 
GL(3,  C) and SL(3, C). One might expect the usual differential geometry of these groups 
to be recovered in this l i t .  However, for q + 1 we obtain an interesting deformation 
of the ordinary differential calculus on SL(3, C) (see also [ I31  for the case of SL(2, C)). 
Functions on the group no longer commute with I-forms, the commutation relations involve 
the Cartan-Killing metric. This observation may be taken as a starting point for further 
investigations aiming at the notion of a ‘quantum group metric’. 

Section 2 recalls the notions of differential calculus and bicovariance on quantum groups. 
In section 3 we briefly review the Hopf algebraic structure of GL, (3, C). The central part 
of our work is section 4 which deals with the determination of all bicovariant differential 
calculuses on GL,(3, C) and a discussion of some of their properties. In section 5 we tum to 
the investigation of bicovariant calculuses on quantum subgroups of GL,(3, C). Section 6 
is devoted to the classical l i t  of bicovariant differential calculuses on GL,(3, C) and 
SL,(3, C). Finally, in section 7 we relate our results to the work of other authors and try 
to give a perspective for further studies. 

2. Differential calculus on quantum groups 

We first recall the definition of a (first-order) differential calculus on an associative algebra 
A and specify later to the case of a Hopf algebra (respectively, a quantum group) [12]. 

Definition Let A be an associative unital algebra. An A-bimodule r together with a linear 
map d : A + r is called first-order differential calculus over A iff 

(i) d(ab) = (da)b +n(db) 
(ii) dd generates r as a left A-module. 

Two first-order differential calculuses (r, d) and (I?, a) over A are said to be equivalent iff 
there exists a bimodule isomorphism < : r + ? with 3 = 5 od. This definition generalizes 
the classical notion of first-order differential forms. We will therefore call the elements of 

Let us now turn to the case of a Hopf algebra. Besides the multiplication and the unit 

for all a, b E A, 

r i - f o m .  

element a quantum group carries the following additional structure: 
A : A + A Q A (co-product) 
E : A + C  (CO-unit) 
S : A - + A  (antipode). 

The first two maps are algebra homomorphisms, the third is an algebra antihomomorphism. 
These maps have to fulfil certain axioms which we need not recall here (cf [3,4,7]).  In the 
commutative case they encode the group structure of the underlying group manifold in the 
algebraic structure of the algebra of functions on the group. In particular, the co-product 

t These results were communicated at the spring meeting of the Deutsche Physikalische CeseUschaft in Hamburg, 
March 1994. 
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translates the group multiplication and can be used to reformulate the left and right action of 
the group on itself. One may now ask whether there are corresponding generalizations of the 
induced actions of the group on differential forms. This leads to the notion of bicovariance 
which is briefly recalled in the sequel. 

Definition. Let A be a Hopf algebra with unit element 1. A first-order differential calculus 
(r, d) over A is called bicovariant iff there are linear maps Ac : r -+ A 8 r and 
A= : r + r 8 d. which are called left and right coactions, such that 

A& db) = A(a)(id 8 d)A(b) 
A&db) = A(a)(d 8 id)A(b). 

An element o E r is said to be left-/right-invariant iff 

A,(@) = 18 o 
Ax(@) = w 8 1 

respectively. w is called bi-invariant iff (2.4) and (2.5) hold simultaneously. 
A bicovariant differential calculus is a special case of a structure called bicovariant 

bimodule, which is by definition an A -bimodule r together with linear maps AL : r + 
d @ r  and Ax : r + r8Asat isfying 

Acc(aeb) = A(a)Ar(e)A(b) 
( i d 8  AL) o AL = (A 8 id) o A= 

(E 8 id) o A&) = e 

A d a e b )  = A ( a ) A d e ) h  
(AE 8 id) o A x  = ( i d 8  A) o A x  

(id 8 E )  o A.a(e) = e 
and 

(id 8 A,) o A= = (A, 8 id) o A,. 

For AL and A* given by (2.2) and (2.3) these identities are satisfied. It turns out that the 
whole structure of a bicovariant bimodule r can be conveniently described by its left- (or 
right-) invariant elements. We introduce the lefi and right convolution products, defined for 
f E d’=Hom(d,C) anda E d  by 

f * a  = (id 0 f)A(a) 
a * f = (f 8 id)A(a) 

and recall some results from 1121. 

Proposition 2.1. Let (r, d) he a bicovariant bimodule over the Hopf algebra A . The set 
of all left-invariant elements of r, called i d ,  is a linear subspace of r. Let { @ ’ } I =  be a 
basis of hvr. Then: 

(i) Any p E r can uniquely be written as p = a, W ‘  with CL, E d. 
(ii) There exist linear functionals f ‘ J  E A‘ such that 

w’a=(f’,*a)o’ V I E Z  V a c d .  (2.8) 

f’J@b) = f ’ K ( U ) f K J ( b )  (2.9) 

The functionals are uniquely determined by (2.8) and fulfil the relations 

f’J(1) = 6‘1, (2.10) 



2548 K Bresser 

(iii) The right coaction on the basis {O'JIEZ is given by 
& ( @ I )  = 0' 8 MJ' 

with MJ' E A satisfying 

A(M1') = M I K  @ M K ~  
& ( M I J )  = 8,'. 

(2.11) 

(2.12) 
(2.13) 

(iv) Bicovariance implies 

Mr'(U*f'K)=(f'r*a)MK' V a ~ d  V J , K E Z .  (2.14) 
In this short exposition we will not consider the higher-order differential calculus. We 

only mention that every bicovariant first-order differential calculus admits an extension to 
a differential algebra containing forms of arbitrary order (cf [12,16]). 

3. The quantum group GLq(3,C) 

Deformations of Lie groups can be obtained by introducing a non-commutative 
multiplication structure on the related Hopf algebra. This usually involves deformation 
parameters. Corresponding multi-parameter deformations of (the algebra of functions on) 
the general linear groups are known (cf 117-191). Examples of differential calculuses have 
been constructed on some of them 119-211. Here we concentrate on the standard one- 
parameter deformation of the algebra of functions on GL(3,  C) [22]. This is the algebra 
A := Fun,(GL(3, C)) generated by 
(i) nine non-commuting entities z i j  , i, j = 1,2 ,3 ,  which we arrange as a mahix Z = (z'j).  

Their commutation relations are . .  
j < k  Zijzik =qZ'kz' j  
i < k  Z i j Z k j  =qZkiz i j  

k - k .  (3.1) 
i < k  j > i  z i j z  1 - z  ~ z ' j  
i < k j < I z'jz'! = zx jz i j  + ( q  -q- ' )  z k j z ' l .  

For q -+ 1 all the matrix elements of 2 commute with each other (classical limit). 
Sometimes it is convenient to treat the indices '. of zij as 'composite indices' taking 
values 1, .. . , 9  (via 11 -+ 1, 12 -+ 2, 3 + 3, '1 -+ 4, etc). 1 

(ii) the unit 1 and the inverse V-' of the quantum determinant 

(3.2) D = z'z5z9 + q2z2z6z7 + q2z3z4zs - qz1z6z8 - q3z32z7 - qz 2 4 9  z z 

which is central in A . 
This non-commutative algebra can be endowed with a co-product, co-unit and antipode 

in the following way: 
A ( z ' j ) = z i k 8 z k j  A ( l ) = l @ l  A(D-' )=D-'QD-'  

&(1) = 1 &(P) = 1 (3.3) i 
E ( Z i j )  = 8 j 

S(Zij)  = ( S ( Z ) ) I j  S(1) = 1 S('D-1) = 2, 

where the summation convention is used and the matrix S(Z) is given by 

2529 - qz6z8 -q-'z2z9 + 2328 4-22226 - q z z 
-qz429 + q2z6z7 zIz9 - qz"7 -q-lz lz6 i L 3 : 4 5  ) , (3.4) 
q2z4z8 - q3z5z7 -qz'z8 + q2z2z7 2'2' - qzZz4 



Calculuses on GLq(3, C) and SL,(3, C) 2549 

(A, ., 1, A, E, S) then constitutes a Hopf algebra which may formally be regarded as an 
algebra of 'functions' on some (fictitious) space GLq(3,  C). 

Remark. In a similar way one obtains the Hopf algebra Fun,(GL(n, C)) using nz generators 
Z = (z'j). Let ZI = 2 8 I ,  Zz = I 8 Z where I is the n x n unit matrix. The relations 
(3.1) can be written in compact form 

RizZiZz = ZzZiRiz (3.5) 
with the help of the nonsingular complex matrix R E M(nz, C) 

n n 

R q a ' ~  ei i e .  , j + (4  - 4-l) ei j @ e ,  q E c \ 101 (3.6) 

where the ma&ces ei j are defined by (ei j ) k j  = SkiSji. This matrix satisfies the quantum 
Yang-Baxter equation 

RnR13Rz3 =, R z R n R i z .  (3.7) 

i,j=l i f - I  
i,, 

The antipode of A is invertible. Defining a diagonal matrix D = diag(1, q 2 . .  . . , q2["-')) 
one has 

s-'(z) = D - ' s ( z ) D .  (3.8) 

4. Bicovariant differential calculus on GLq(3,C) 

Let (r, d) be a first-order differential calculus over A := Funq(GL(3, C)). r is generated 
by the differentials dz'j (i .  j = 1 , 2 , 3 )  as an A-bimodule. The differentials of the other 
generators are obtained using the Leibniz rule: 

To mimic the case of (commutative) differential geometry it is natural to require that r 
is generated by dz'j (i; j = 1,2,3) as a left A-module. This assumption will be made in 
the sequel. 

Now we proceed along the lines of [14] with emphasis on the fundamental results 
of 1121. 

4.1.~ The left-invariant Maurer-Carton I-forms 

In order to determine the most general commutation relations of elements of r with elements 
of A we use a convenient basis of r. It consists of the quantum analogues of the Maurer- 
Cartan 1-forms defined by 

B ' j  =S(Z'k)dZkj. (4.3) 
The relevant properties of these I-forms are summarized in 

~ e m m . 4 . I .  (i) The 1-forms B ' j  are left-invarianf i.e. 

A ~ ( 0 ' j )  = 18 B ' j  . 

AR(Oij)  = 0"" 8 M,"'j 

(4.4) 
(ii) The set B := {8'j/i, j = 1 ,2 ,3 ]  is a basis of :J as a C-vector space. 
(iii) For the right coaction on 6 ' j  , one finds 

Mmnij  := S(z',)z"j E A .  (4.5) 
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By forming composite indices from the matrix indices (see section 3) one obtains (2.11) 
with MJ' satisfying (2.12) and (2.13). 

Remark Using (3.8) one can verify the identity ~ i q - 2 ' S ( z ' , ) z k i  = q-2x6$. This shows 
that Trq 6 = xi q6-*'6 [i  is a bi-invariant element of r . 
4.2. Structure of the commutation relations 

Since the Maurer-Cartan I-forms 0 i j  form a basis of the space of all left-invariant I-forms 
i.J we have uniquely determined linear functionals f ' J  E A', 1 < I, J < 9, such that 

' 

B ' U  = (f ' j * a)0 = ((id 8 f ' j )  0 A@))@ (4.6) 
for all a E A (proposition 2.1). Because of (2.9) and (2.10) these functionals provide us 
with a representation F : A + M(9, C). The 'fundamental ma&es' 

(4.7) 
completely and uniquely specify the first-order differential calculus (using the equivalence 
definition of section 2.1). 

There are restrictive conditions which a set of matrices has to satisfy in order to be the 
fundamental matrices of a bicovatiant differential calculus on A: 
(i) Consistency with the commutation relations of A: 

Fk'j)  = (f I J ( Z ' j ) ) l . J = l  ..... 9 

By differentiating the commutation relations (3.5) one obtains 

0 = d(RZiZ2 - Z2ZiR) = RdZlZz -k RZldZz - dZzZiR - ZzdZiR. 
After convertion of the differentials into Maurer-Canan forms and commuting all 
algebra elements to the left we get conditions for the values f ' J ( z ' j )  of the functionds 
f ' I .  

(ii) Bicovariance conditions (2.14): 
Inserting the algebra generators zi ,  in (2.14) and using (4.6) further conditions are 
obtained for the values f ' ~ ( z ' j ) .  

Acting with F on the commutation relations (3.5) and using the representation property 
of F leads to further equations for the matrices F(z'j). These are nonlinear equations, 
in general. Furthermore, F(D)  has to be invertible in M(9, C). 
Using the conditions (iHiii) one can derive the most general set of matrices F(zi j )  

which determines a bicovariant differential calculus. For this purpose we used the computer 
algebra software Reduce. It is convenient to solve the equations resulting from (i) and (ii) 
first because they are linear in the matrix elements. Using finally the equations resulting 
from condition (iii) we are led to the following results. 

(iii) Representation properties of the functionah f I J :  

4.3. Results 

Proposition 4.2. Let q E C \ IO, =U, +i]. Then all bicovariant differential calculuses on 
GL,(3, C) are contained in two disjoint one-parameter families of calculuses denoted by 
r&), U = 1,2 where 

t E C \ IO) 

t E c \ {01 

(46 + q 4  + I)t - (46 + 44+ 42) # 0 

( 4 6 + q 2 +  I)t - (44+42+ 1) # 0 
in the first and 
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in the second case. The calculuses r,(t) and ru,(t') are equivalent if and only if v = v' 
and t = f'. 

Remark. The calculuses can be described explicitly in terms of their fundamental matrices 
F(zij) (i, j = 1,2,3) which depend on q . a d  the extra parameter t .  The rather lengthy 
expressions can be found in [23]. For the exceptional values q = f l ,  f i  there may be 
further calculuses. 

Now one can calculate the commutation relations of the generators of A and their 
differentials from the commutation relations involving the Maurer-Cartan I-forms. These 
calculations have also been carried out with the help of Reduce. 

Corollary 4.3. Let q E C \ (0, il, i i ] .  The bicovariant differential calculuses rl@) on 
GL,(3, C) are given by 

. .  

(dz'j)z'j = ( ; z  - + t -  1 ) z'jdz'j+uz'jz'jTr,B - . 

. .  ~f - 

4 
t 

4 

- fi(z'jz'l -qzilzkj)Tr,8 

(dzij)z', = - z ' ~ & ' ~  + (t  - l)z'jdz'l +uzijzilTr,B 

(dzij)zkj = -zkjdzil + (t - l)zijdzkj +ozijzkjTr,B 

j c I 

i < k 
(4.8) 

(&'j)zk; =tzkrdz' j  +(t  - l)z'jdzki fuzijzk1Tr,B 
i < k ,  j < l 

( & ' j ) z k i = t Z k ~ d z i j + ( t - l ) z i j d z X ~ + ~ ~ ' j ~  k ITrqB-t 

+q,9(z'rzkj -qzijzkr)TrqB i < k, j > 1 

with t E C \ {O}, (q6 + q4 + 1)t - (q6 + q4 + q2) # 0. The second family of calculuses 
r2@) is determined by 
(&'j)zij = ( t q 2 + t  - 1)z'j dz'j f8z'jz'jTrqB 

(&))z'l = t q z ' , d z ' j + ( t q 2 - l ) z ' j d z ' ~ + B z ' j z ' r T r q B  i < l  
(&ij)zkj = t q z k j & ' j + ( r q 2 - l ) z i j ~ k j + B z i j z k j T r , B  i < k 
(&'j)zkl = rzkidzij + ( t  - 1)z'j dzkr + Szijzk,Tr,e 

(4.9) 

with t E U2 \ (01, (q6 +q2 + l)t - (q4 + q2 + 1) # 0. We have introduced the abbreviations 
(4.10) TrqB = q4e l 1  +q2eZ2 + e3, 
(4.11) 
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t ( q 2  - l)(t - 1) 
= 44($ + l)(t - 1) - q 2  + t 

(4% - l ) ( t  - 1) 
44(42' - 1) + (42 + l)(f - 1) 

e = -  

(4.12) 

(4.13) 

(4.14) 

The missing relations can be derived in both cases by using the Leibniz rule and the 
relations (3.1). 

Remark. For the special case t = 1 the formulae (4.8) and (4.9) simplify drastically. They 
can be written in compact form 

(4.15) 
(4.16) 

for U = 1 and U = 2, respectively, and define bicovariant differential calculuses for arbitrary 
n. These relations were first found by Maltsiniotis [ZO] and independently by Manin [Zl]. 
They investigated differential calculuses on multi-parameter deformations of GL(n) that are 
induced by calculuses on the corresponding quantum plane. In R-matrix form (4.15) and 
(4.16) appeared in [24-26] and were studied in detail in [U] (see also [28]). 

The bi-invariant element Trq 8 plays a pmicular role. Acting with it on A by taking 
the commutator [Tr, 8, a] (a E A) defines a derivation from A into the space of I-forms. 
It turns out that this derivation coincides with d up to a normalization factor. 

Proposition 4.4. For all first-order differential calculuses (I'"(t), d) on GLq(3, C) the 
differential d is an inner derivation: 

1 
da = [Tr,e. a] 

where 

(4.17) 

4.4. R-morrir formulation 

The commutation relations of GLq(3,  C) can be written in the compact form (3.5) using the 
R-matrix (3.6). Now the question arises whether also the bimodule structure of r,(t) can 
be compactly expressed in such a way. Indeed, this can be achieved by using a convenient 
basis of iJ. It is related to a procedure proposed by JurEo [29] to construct bicovariant 
differential calculuses on certain (classes of) quantum groups. The latter can be applied to 
the case of GL,(n, C) for arbitrary dimension n. The construction is based on a further 
result of Woronowicz [12] which we recall next. 

Given a family of functionals f = (f',)r,,a and a family of algebra elements 
M = (MI ' ) I , I a  satisfying (2.9), (2:10), (2.12), (2.13) and the compatibility condition 
(2.14) one can endow the free left A -module r generated by [ m f } I a  with the structure of 
a bicovariant bimodule: one regards [ m f }  as left-invariant elements forming a basis of 
and defines the right multiplication by (2.8) and the right coaction by (2.11). 

denotes ordinary matrix transposition). 
It is easy to see that M = Z and M = S(Z)' are possible choices for M ([ 

The appropriate functionals are the generators 
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L* = ( e i i j ) I G j . j G n  of the algebra of regular functionals on GL,(n, C). They are defined 
by 1221 

( e * i j , z k l )  = R*'k 

(t*t'.,l) J =s;. (4.19) 
(l*ij,ob) = ( . t * t k , a ) ( e * k j ,  b) 

J I  

for aU a, b E A where we denote the evaluation e@) by (e,  a )  and use the abbreviations 

Ri = c'PRP R-  = c-R-' .  (4.20) 

Here P is the permutation matrix P i:i = 8585 and c', c- are complex constants # 0. 
The quantum Yang-Baxter equation (3.7) assures the compatibility of~(4.19) with the 
relations (35). The dual of A denoted by A' has a natural multiplication smcture given by 
the convolution product 

(f * g , a )  = (f Og, A@)) a E A, f , g  E A' 
and contains E as unit element. One regards the subalgebra U of A' generated by e* i j  (and 
two further functionals e" playing a similar role as the inverse of the quantum determinant 
in the construction of the Hopf algebra A ). U can be endowed with the structure of a Hopf 
algebra in a natural way (cf [22,30]). In particular, one obtains for the antipode S' 

(4.21) 

It turns out that in the case of M = Z the choice f = S'(L*)' fdfils all requirements 
mentioned above. The condition (2.14) is checked on the generators a = z ' j  with the help 
of the basic relations (3.5). For M = S(Z)* one sets f = L*. However, in these cases one 
is led to bicovariant bimodules of dimension n. To build up an n2-dimensional bimodule as 
a candidate for a differential calculus on GL,(n, C) tensor products of two n-dimensional 
bimodules can be used. Out of the various possibilities [29] we choose 

(S'(L"), Z) = (L", S(Z)) = (R*)- ' .  

M I J  = ~ ' j k ' = z ; ~ s ( z i ~ )  f r J = f i f i k ,  = s r ( e " k i ) * e + j , .  (4.22) 

The commutation relations of the bimodule generators wi j and the algebra generators z kt  

are for the choice of upper signs in (4.22) 

w i j z k l  =rzkd(R-')d:j  ( R - ' ) j ; !  mab ( t  =c-/c+ # 0) (4.23) 

and in the case of lower signs 

= r z k d ~ = L  ~ e )  b wa * (r=c+/c- +o). (4% 

These have the desired simple form. 

Tro = xi ui '. da is defined for all a E A as 
To introduce a differential operator d one uses (in both cases) the bi-invariant element 

(4.25) 
1 

4 - 4 -  
&l=- [Trw,al 

where d satisfies the Leibniz rule and using the bi-invariance of Tr w one can verify (2.2) 
and (2.3). Now it is possible to calculate the relation between wj j and the Maurer-Cartan 
I-forms defined in (4.3). One obtainst 

0'. J -ut!? - J !  w k I  (4.26) 

t Here the double index ij determines rhe row and ' 1  the column of the matrix U. 
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where the complex mahix U E M(n2. C) is given by 

(4.28) 

in the first and second case, respectively. r is generated by dzij as a left A -modulet if 
and only if (I is invertible. This leads to additional restrictions on t ,  in the case n = 3 
these are 

(q6 + q4 + ~ ) t  - (q6 +q4 + q2) # o 
( q 6 + q z +  ~ ) t  - (q4+q2+ 1) # 0 

for v = I 
for v = 2. 

Using the transformation (4.26), the relations (4.23) and (4.24) lead to commutation 
relations of Maurer-Cartan I-forms and algebra generators which agree with those found 
in section 4.3 for the differential calculuses r&). 
Proposition 4.5. Let 4 E C \ {O, i l ,  rti}. For every bicovariant differential calculus on 
GL,(3, C) there is a basis of in" r such that the commutation relations (2.8) can be expressed 
in terms of the R-matrix as follows. For the calculuses rl(t) this basis is given by (4.26) 
and (4.27) and leads to relations (4.23). In the case of rz(t) the relations (4.24) are obtained 
with the transformation given by (4.26) and (4.28). 

Remark. The procedure outlined above has been used in several papers to consmct 
examples of bicovariant differential calculuses on quantum groups. The calculuses rl (t)  
are discussed in 131,151 for GL,(2, C) and GL,(3, C)#. In I301 the calculuses r z ( t )  were 
given for GL,(n, C). It is interesting that this procedure already exhausts the possible 
bicovariant differential calculuses in the case of GL,(3, C). For GL,,,(2, C) this has been 
shown in [32]. In that case there is only one family of calculuses. 

5. Induced calculuses on SLq(3,@) and real forms 

With the complete collection of bicovariant differential calculuses on GLq(3, C) at hand one 
can proceed to investigate the induced calculuses on quantum subgroups. Those are obtained 
by imposing additional relations on A or by introducing an involution (a *-structure). 

5.1. SLq(3,C) as quantum subgroup of GLq(3,C) 

The quantum group SLq(3,C) is obtained from GL,(3,@) by adding the unimodularity 
condition 

V = l .  (5.1) 
As an immediate This is consistent with the Hopf algebra stmcture of GLq(3,C). 

consequence we have 

dV=O (5.2) 

for a differential calculus over SLq(3,C). We determine all bicovariant differential 
calculuses on SL,(3, C) which are 'induced' by a differential calculus on GL,(3, C). These 

t Recall the additional assumption at the beginning of this section. 
I: The statement in [IS] thar the additional parameter is inessential is incorrect as we have shown. 
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are all calculuses on GL,(3, C) that are consistent with the additional conditions (5.1) and 
(5.2). Acting with 3 on (5.1) leads to 

t 3 p  1 (5.31 

with - for the first and + for the second family of calculuses. Calculation of dD leads to 

(5.4) 

(5.5) 

for the first and second case, respectively. All this can be summarized as follows. 

Proposition 5.1. Let q E C \ (0, fl, fi}. In order to obtain bicovariant differential 
calculuses on SLq(3,C) from (4.8) and (4.9) one has to set r3 = q2 and f 3  ='q-2.  
respectively. Hereby solutions of (5.3) with 

(4' + q 4 +  1)t - (q6 +q4 +q2)  = 0 
(q6 +q2 + 1)t - (q4+q2 + 1) = 0 

for v = 1 

for v = 2 

have to be excluded. Hence, for generic q there are six bicovariant differential calculuses 
on SLq(3, C). 

Remark Though (5.1) constrains the z i j ,  their differentials remain independent with 
regard to the left module structure. It is impossible, for example, to express dz9 as 
d i 9  = a, dz', I = 1 , .  . . ,8 .  This means that all bicovariant differential calculuses on 
SL,(3, C) given above have nine independent 1-forms. Indeed, as was shown in [33] the 
dimension of the space of 1-forms on SL,(n, C) is fixed to be 1 or n2 if bicovariance is 
assumed. 

5.2. Real forms of GL,(3, C) and SLq(3, C) 

To obtain real forms of the quantum group GLq(3, C) one has to endow the underlying 
Hopf algebra with a *-structure, i.e. a lmear map * : A + A with 

(ab)* = b*a' ~ A(a*) = A(a)* 
@a)* =Xu* &(a*) = &(a) 

(a*)* = a  S(S(a)")' = a 

- 

for all a,  b E A, A E C. Usually there are different choices for such a *-shucture. We 
consider two of them [22]: 

(i) The quantum group GLq(3, B) is obtained by setting 

Z' = z ( T I ) *  = D-', (5.7) 
The action of * is extended to the whole algebra A as an antihomomorphism. For this 
to be welldefined, i.e. to be compatible with the relations (3.9, one has to demand 
141 = I .  

(U) Analogously one introduces for q E 1 the notion of hermitian conjugation by 

z* = S(Z)' (@)* = D. (5.8) 
and obtains the quantum unitary group Uq(3). 
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By imposing additionally the unimodularity condition (5.1) one is led to the quantum 

A bicovariant differential calculus on a *-Hopf algebra should admit an extension of 
groups SL,(3,R) (141 = 1) and SU,(3) (q E W), respectively. 

the *-operation to the space of 1-forms r in such a way that (cf [12]) 

(ae)* = e*a* (ea)* =.*e* (do)' = d(a*) . (5.9) 
As a consequence one has the compatibility of the *-shucture with the left and right coaction 
of A on I-: 

&(e*) = &(e)* A&") = &(e)*. (5.10) 

Given a *-structure as well as a bicovariant differential calculus on GL,(3, C), there is 
at most one *-structure on 6 ' j  that fulfils all requirements (5.9). We discuss the results in 
the case of the two examples above. 

(i) In the case of (5.7) one deduces with the help of (5.9) the formula 

(6i j )*  = q2"-')f"ja'(S(z',))6Xr. (5.11) 
For the calculuses rl ( t )  this reads explicitly 

q2 6 
(6'l)X = + -(t - l)(t - q6)Tr, 6 

t 2  tZN 

4 
t2N 

+ -($t - 1)(t - q2)Tr, 6 

3 
(e2;)* = $6'' 

(e 33)' = 

(63;)' = -e3' for i = 1,2 

with N = q4(q2 + l)(t - 1) - q2 + t .  In the case of rz(t)  we have similarly 

for i  = 1.3 

1 1 

4 
t 2  

1 
t 2  q2t2N 
1 

33 + -(q2t - l)(t - q2)Tr, 6 
t2N 

1 
(4% - l)(t - q2)Tr, 6 (6ll)i  = -6'1 + - 

(6 I .)' = -6 OtZ 1 I for i = 2 , 3  

( 6 2 ~ ) * = ~ 6 2 ~ + - ( q 4 t ( q 2 - 1 ) - q 4 ( t - q 2 ) + t - l ) 6 3 j  1 1 
q6t2N 

(5.12) 

(5.13) 
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with N = q4(q2t - 1) + (q2 + l)(t - 1). For to be an involution it is necessary to 
require It1 = 1. If e is an arbitrary element of r with e = ale' we set e' = (el)*(al)*. 
Then we can proof that (5.9) holds indeed using the commutation relations (4.6) and 
the property (4.17) observing that 

(5.14) 

Proposition 5.2. Let q E [w E Cllwl = I] \ (fl,  & t i } .  Then all bicovariant *-calculuses on 
GLq(3,W) are given by (4.8) and (4.9) with the restriction It] = 1 in both cases. All six 
calculuses on SLq(3, C) found for generic q are *-calculuses. 

(ii) For Uq(3) the ody *-structure on r,@) is given by 

(e ' . ) *= I -e j i .  (5.15) 
Using (4.6) one proves that (ea)' =~u*e* holds if and only i f f  is~real. Again, (5.14) 
holds as a consequence of (5.15) and the reality of t .  Hence (day = d(a*). 

Proposition 5.3. Let q E IR \ [O, f l ] .  All bicovariant *-calculuses on Uq(3) are given 
by (4.8) or (4.9) with f E W. On SUq(3) these induce two bicovariant *-calculuses 
corresponding to the real solutions of t3 = q*'. 

Remark On SUq(2) one recovers the 4 0 +  calculuses [12]. The uniqueness of the latter has 
been shown in [34]. In [35,36] examples of bicovariant differential calculuses on SUq(n) 
for arbitrary n are given with the help of the constructive procedure outlined in section 
4.4. In [361 the n calculuses corresponding to the choice of lower signs in (4.22) and the 
parameter values t" = q-' are discussed. The authors claim that all these calculuses are 
*-calculuses. This is not true, however, for t 6 B. 

6. The classical limit 

It is interesting to investigate the behavior of the differential calculuses on GLq(3, C) and 
SLq(3, C) in the limit q 4 1. One might expect the classical calculus to emerge. However, 
the formulae obtained for q + 1 depend on the way in which the limit is performed. 

In the case of GLq(3, C) the additional parameter t may depend on q but need not. If 
f and q are regarded as independent, we obtain with 

1 - t  limu = l ime i 
q+l q-1 3 
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For t + 1 one recovers the classical calculus where [dz'j, z ' ~ ]  = 0 V i ,  j .  k ,  1. We can 
obtain calculuses on SL(3, C) from (6.2) by imposing (5.1) which fixes t to be a solution 
of t3 = 1. Apa~i from the classical calculus one is led in this way to two non-classical 
calculuses corresponding to the two primitive third roots of unity. 

In the case of SLq(3, C) we meet with a different situation. Since t and q are related 
by (5.3), t is determined for q + 1 up to the fact that a cubic equation for t has three 
solutions in the complex plane. For t + f and t + f 2  with f = e(2ni/3) one finds the same 
result as by setting f = or r = 6' in (6.2). Here we investigate the case t = qSt3 + 1 
in some more detail: 

lim u = l im6 = 1 

l imp = l imp = 4 '  1 
6 9-t l  

$7-1 q-1 

This leads us in both cases (4.8). (4.9) to the following structure: 

with the abbreviations 
r = ? ~ r e = ? , g l  2 z( I + ~ ~ ~ + e ~ ~ )  

k l i  k Y'j', = #,z j - p j z  I ) .  

(6.3) 

(6.5) 

Using composite indices we have 

(6.6) 
The symmetric matrix y is degenerate, i.e. det y = 0, and satisfies y" ZJ = 0. One of 
the 'coordinates' zI is redundant because of the constraint D = 1. We can eliminate, for 
example, z9 in a certain coordinate patch, where z1z5 - zzz4 # 0. If we consider in (6.6) 
only indices I ,  J = 1, . . . ,8, then we obtain a non-degenerate part of y, 

(6.7) 
with detg = -(zlzs - ~ ~ . ? ~ ) ~ / ( 3 . 6 * )  # 0. The 1-form r is still independent of the 1-forms 
dzl, Z = 1, . . . , 8. In particular, TrB does not vanish in the classical l i t .  

[ d z , z ] - y  I J - I J  7 ~ = ~ d z .  J 

I J  8 = (v . ) l if .ICS 

The matrix g-' gives rise to a metric 

B = grJ & I @  dZJ (6.8) 
on SL(3, C) (where we set glKgKJ = 8;) which turns out to be the Cartan-Killing metric. 
In order to prove this we first introduce the Maurer-Camn 1-forms 6'j corresponding to 
the ordinary differential calculus on SL(3.C).  They are given by 6 = T ' d Z  and obey 
TrB̂  = 0. In terms of the basis (B^'[Z = 1,. . . , 8} of the space of 1-forms on SL(3, C) we 
have 

(6.9) B = &J 6' @e^J 
with the coefficient matrix 

2 0 0 0 1 0 0 0  
0 0 0 ~ 1 0  0 0 0 
0 0 0 0 0 0 1 0  

(hJ)=6 l o l o o o o o o  1 0 0 0 2 0 0 0 I (6.10) 

I I 0 0 0 0 0 1 0 0  

0 0 0 0 0 0 0 1  
0 0 1 0 0 0 0 0  



Calculuses on GLq(3,C) and SL,(3, C) 2559 

On the other hand. the Cartan-Killing metric K on SL(3. C) can be written as 1371 

~ ( 2 ,  p) = 6Tr(XY) (6.11) 

where 2 and f are the left-invariant vector fields generated by X ,  Y E s l ( 3 ,  C). The basis 
[ X ~ l l  = 1,. . . ,8) of s l ( 3 ,  C) that generates vector fields dual to [ @ [ I  = 1 , .  . . , 8 )  is given 
by 

X j ' = e i I  for i # j 
X i ' = e i ' - e 3 3  for i = 1 , ' 2 .  

The matrices et j are defined by (e? j )  ' I  = S$Sj ! .  Using (6.1 1) and (6.10) one easily obtains 

K = K ( % i j ,  . f k i ) i i j  @ikj 
= 6 ( S f S j k + g j j g l , ) e ^ ' j ~ e ^ ' ,  

= & j ; i i j @ 8 k , .  

Consequently, B equals the Cartan-Killing metric, which is bi-invariant and has 
signature (5,3). The bicovariant differential calculuses on SL,(3, C) are compatible with 
the 'reality conditions' (z')* = z', so that we obtain the same result for SLq(3, R), 4 + 1 .  
Then y and z form a (generalized) 'Galiei structure' on the group manifold SL(3, R). A 
corresponding result for SL,(2, W) was obtained in [13] (see also [38]).  

I .  Conclusions 

The way we obtained our results is not in principle, restricted to specific values of n. 
However, even for n = 3 computations are lengthy and tedious. We proved that for 
GL,(3,  C) there are only two oneparameter families of bicovariant differential calculuses 
which both can be obtained by JuEo's method described in section 4.4. Out of these (for 
generic q) there are six calculuses that are consistent with the condition of unimodularity. In 
this way one i s  led to all ninedimensional bicovariant differential calculuses on SL,(3, C). 
The results are in accordance with those of Schmiidgen and Schiiler [33], who succeeded 
to classify all bicovariant differential calculuses on SL,(n, C) (for arbitrary n E N) using 
methods different from ours. The latter are based on the relation [12] between bicovariant 
differential calculuses and ad-invariant right ideals of A . 

There have been attempts to construct bicovariant differential calculuses on SL,(n, C) 
with an (nz - 1)-dimensional space of 1-forms 139,401 that are also bicovariant. This can 
only be achieved if one allows a deformation of the ordinary Leibniz rule for the exterior 
differential. The great advantage of keeping the latter is, however, its universality and 
simplicity. 

On the other hand following the path outlined above one arrives at an interesting 
deformation of the ordinary calculus on SL(n, R) that was discussed in a more general 
setting in 138,411 . There it has been pointed out that similar structures can be found in 
the It6 calculus of stochastic differentials. Also, relations to proper time formulations of 
quantum theories have been established. All this hints at a possible physical relevance of the 
structure (6.6). For SL(n, R) the natural group metric enters this formula. This motivates 
further investigations concerning a suitable generalization to the case q # 1 .  It seems to 
be reasonable that a candidate for a quantum group metric can be obtained this way. This 
would be a crucial step in gaining more insight into the geometry of a quantum group and 
could pave the way to a formulation of Kaluza-Klein theories using quantum groups as 
intemal spaces. 
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After completion of this work we received a preprint by Schmiidgen 1421 in which 
a complete classification of bicovariant differential calculuses on GL,(n. C) for arbitrary 
n is reported. Again, the methods used there are different from ours. Our discussion 
of the case n = 3 is more detailed and clarifies the relation to work by other authors. 
In particular, we have presented explicit formulae for the commutation relations of the 
algebra generators zi, and their differentials. We have discussed calculuses on real forms 
of GL,(3, C) and considered the classical limit in some detail. Of most interest hereby 
is the geometric structure which arises in the classical limit of a bicovariant differential 
calculus on SL(n, C). 
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